Difference between revisions of "DX TM1638 Display"
(7 intermediate revisions by the same user not shown) | |||
Line 60: | Line 60: | ||
|} |
|} |
||
− | After sending <tt> 46 |
+ | After sending <tt> 46</tt> the responce will be 4 bytes, key one is in bit zero (LSB) of the first byte, key two is in bit one of the second byte, etc. |
+ | key 5 is in bit 4 of the first byte, key 6 in bit 4 of the second byte, etc. |
||
− | Same after sending <tt>46 C1</tt> (??) |
||
=VHDL code for numeric data display= |
=VHDL code for numeric data display= |
||
+ | |||
+ | The code below can read the TM1638 key status, and show hex and decimal numbers on the display. |
||
+ | |||
==File <tt>design_top.vhdl</tt>== |
==File <tt>design_top.vhdl</tt>== |
||
<nowiki>--------------------------------------------------------------------------------- |
<nowiki>--------------------------------------------------------------------------------- |
||
Line 70: | Line 73: | ||
-- |
-- |
||
-- |
-- |
||
− | --TODO: |
||
− | -- allow specification of d_clk frequency via generics |
||
− | -- remove compiler warnings |
||
− | -- check rounding of compile-time divide (bcd function) |
||
− | -- clock-division in dx_display_xmit via counter, not 64-bit register. |
||
---------------------------------------------------------------------------------- |
---------------------------------------------------------------------------------- |
||
library IEEE; |
library IEEE; |
||
Line 92: | Line 90: | ||
COMPONENT dx_display |
COMPONENT dx_display |
||
+ | Generic(clkDivider: integer); |
||
PORT( |
PORT( |
||
clk : IN std_logic; |
clk : IN std_logic; |
||
Line 112: | Line 111: | ||
signal digits: bytearray(0 to 7) := (others => x"00"); |
signal digits: bytearray(0 to 7) := (others => x"00"); |
||
signal leds: bytearray(0 to 7) := (others => x"00"); |
signal leds: bytearray(0 to 7) := (others => x"00"); |
||
− | signal data: integer range -2000000000 to 2000000000 :=0; |
+ | signal data: integer range -2000000000 to 2000000000 :=0;--20000/3; |
+ | signal decdata: integer range -2000000000 to 2000000000 :=0;--20000/3; |
||
signal tmp: std_logic_vector(31 downto 0); |
signal tmp: std_logic_vector(31 downto 0); |
||
signal keybyte: std_logic_vector(7 downto 0); |
signal keybyte: std_logic_vector(7 downto 0); |
||
+ | signal key_int:integer range 0 to 255; |
||
− | |||
begin |
begin |
||
Inst_dx_display: dx_display |
Inst_dx_display: dx_display |
||
+ | Generic Map(clkDivider => 16) |
||
PORT MAP( |
PORT MAP( |
||
clk => clk, |
clk => clk, |
||
Line 130: | Line 131: | ||
Inst_display7seg:display7seg |
Inst_display7seg:display7seg |
||
PORT MAP( |
PORT MAP( |
||
− | digits => digits(0 to |
+ | digits => digits(0 to 1), |
− | data => |
+ | data => key_int); |
− | + | Inst_display7segDec:display7seg |
|
− | + | PORT MAP( |
|
− | + | digits => digits(2 to 7), |
|
− | + | data => decdata); |
|
reset_proc: process(clk) |
reset_proc: process(clk) |
||
Line 144: | Line 145: | ||
Count <=Count-1; |
Count <=Count-1; |
||
else |
else |
||
− | Count<= |
+ | Count<=200*1000*1; |
+ | data<=data+1; |
||
--for i in 0 to 3 loop |
--for i in 0 to 3 loop |
||
-- tmp(i*8 + 7 downto i*8) <= keydata(i); |
-- tmp(i*8 + 7 downto i*8) <= keydata(i); |
||
Line 154: | Line 156: | ||
--tmp(15 downto 8) <= keydata(2); |
--tmp(15 downto 8) <= keydata(2); |
||
--tmp(7 downto 0) <= keydata(3); |
--tmp(7 downto 0) <= keydata(3); |
||
− | tmp(23 downto 0)<=std_logic_vector(to_unsigned(data+1,24)); |
+ | --tmp(23 downto 0)<=std_logic_vector(to_unsigned(data+1,24)); |
− | tmp( |
+ | --tmp(7 downto 0) <= keybyte; |
+ | --tmp(15 downto 8) <= keybyte; |
||
⚫ | |||
− | + | --tmp(23 downto 16) <= keybyte; |
|
+ | --tmp(31 downto 24) <= keybyte; |
||
⚫ | |||
+ | decdata<=to_integer(to_bcd(bitarray(std_logic_vector(to_unsigned(data,20))))); |
||
+ | key_int <= to_integer((unsigned(keybyte))); |
||
for i in 0 to 7 loop |
for i in 0 to 7 loop |
||
leds(i)(0)<=keybyte(i); |
leds(i)(0)<=keybyte(i); |
||
− | --leds(i)(0)<='0'; |
||
leds(i)(1)<='0'; |
leds(i)(1)<='0'; |
||
end loop; |
end loop; |
||
Line 186: | Line 191: | ||
entity dx_display is |
entity dx_display is |
||
+ | Generic(clkDivider: integer); |
||
PORT( |
PORT( |
||
clk : IN std_logic; |
clk : IN std_logic; |
||
Line 196: | Line 202: | ||
); |
); |
||
end dx_display; |
end dx_display; |
||
− | |||
architecture Behavioral of dx_display is |
architecture Behavioral of dx_display is |
||
− | signal counter : std_logic_vector(5 downto 0) := (others => '0'); |
+ | signal counter : integer range 0 to 31 :=0;--std_logic_vector(5 downto 0) := (others => '0'); |
signal counterPreClk:std_logic:='0'; |
signal counterPreClk:std_logic:='0'; |
||
signal counterClk: std_logic:='0'; |
signal counterClk: std_logic:='0'; |
||
− | signal nextcounter : unsigned(counter'range); |
+ | signal nextcounter : integer range 0 to 31; --unsigned(counter'range); |
signal byte : std_logic_vector(7 downto 0); |
signal byte : std_logic_vector(7 downto 0); |
||
Line 211: | Line 216: | ||
signal resetCount : integer range 0 to 32*1000*1000 :=1*100-1; |
signal resetCount : integer range 0 to 32*1000*1000 :=1*100-1; |
||
signal keydataone : std_logic_vector(7 downto 0); |
signal keydataone : std_logic_vector(7 downto 0); |
||
− | constant headersize: integer := |
+ | constant headersize: integer := 8; |
COMPONENT dx_display_xmit |
COMPONENT dx_display_xmit |
||
+ | Generic(clkDivider: integer); |
||
Port ( |
Port ( |
||
clk : in STD_LOGIC; |
clk : in STD_LOGIC; |
||
Line 228: | Line 234: | ||
begin |
begin |
||
− | nextcounter <= unsigned(counter) + 1; |
+ | --nextcounter <= unsigned(counter) + 1; |
+ | nextcounter <= counter +1; |
||
− | |||
− | Inst_dx_display_xmit: dx_display_xmit |
+ | Inst_dx_display_xmit: dx_display_xmit |
+ | Generic Map(clkDivider => clkDivider) |
||
+ | PORT MAP( |
||
clk => clk, |
clk => clk, |
||
reset => reset, |
reset => reset, |
||
Line 249: | Line 257: | ||
newData<='1'; |
newData<='1'; |
||
case counter is |
case counter is |
||
− | when "000000" => byte <= x"00"; endCmd <= '1'; |
+ | --when "000000" => byte <= x"00"; endCmd <= '1'; |
− | when |
+ | when 0 => byte <= x"46"; endCmd <= '0'; |
− | when |
+ | when 1 => byte <= x"00"; endCmd <= '0'; send<='0'; |
− | when |
+ | when 2 => byte <= x"00"; endCmd <= '0'; send<='0'; |
keybyte(0)<=keydataone(0); |
keybyte(0)<=keydataone(0); |
||
keybyte(4)<=keydataone(4); |
keybyte(4)<=keydataone(4); |
||
− | when |
+ | when 3 => byte <= x"00"; endCmd <= '0'; send<='0'; |
keybyte(1)<=keydataone(0); |
keybyte(1)<=keydataone(0); |
||
keybyte(5)<=keydataone(4); |
keybyte(5)<=keydataone(4); |
||
− | when |
+ | when 4 => byte <= x"00"; endCmd <= '1'; send<='0'; |
keybyte(2)<=keydataone(0); |
keybyte(2)<=keydataone(0); |
||
keybyte(6)<=keydataone(4); |
keybyte(6)<=keydataone(4); |
||
− | when |
+ | when 5 => byte <= x"40"; endCmd <= '1'; -- Set address mode - auto inc |
keybyte(3)<=keydataone(0); |
keybyte(3)<=keydataone(0); |
||
keybyte(7)<=keydataone(4); |
keybyte(7)<=keydataone(4); |
||
− | when |
+ | when 6 => byte <= x"88"; endCmd <= '1'; -- Turn display on, lowest brightness (0) |
− | when |
+ | when 7 => byte <= x"C0"; endCmd <= '0';-- Write at the left display |
when others => |
when others => |
||
− | if |
+ | if counter <= 15+headersize then |
− | if counter(0)=' |
+ | if to_unsigned(counter,1)(0)='0' then |
− | byte<=digits( |
+ | byte<=digits((counter-headersize)/2); |
else |
else |
||
− | byte<=leds( |
+ | byte<=leds((counter-headersize)/2); |
end if; |
end if; |
||
− | if |
+ | if counter < 15+headersize then |
endCmd<='0'; |
endCmd<='0'; |
||
else |
else |
||
Line 291: | Line 299: | ||
counterPreClk<='0'; |
counterPreClk<='0'; |
||
if reset = '1' then |
if reset = '1' then |
||
− | counter <= |
+ | counter <= 31; |
− | elsif counter = |
+ | elsif counter =31 then |
counterPreClk<='1'; |
counterPreClk<='1'; |
||
− | counter <= |
+ | counter <= 0; |
− | elsif adv = '1' and counter |
+ | elsif adv = '1' and counter < 31 then |
counterPreClk<='1'; |
counterPreClk<='1'; |
||
− | counter <= |
+ | counter <= nextcounter; |
end if; |
end if; |
||
end if; |
end if; |
||
Line 313: | Line 321: | ||
resetCount <=resetCount-1; |
resetCount <=resetCount-1; |
||
else |
else |
||
− | resetCount<= |
+ | resetCount<=1*100*1000; |
reset<= not reset; |
reset<= not reset; |
||
end if; |
end if; |
||
Line 332: | Line 340: | ||
entity dx_display_xmit is |
entity dx_display_xmit is |
||
+ | Generic (clkDivider: integer); |
||
Port ( |
Port ( |
||
clk : in STD_LOGIC; |
clk : in STD_LOGIC; |
||
Line 343: | Line 352: | ||
d_strobe : out STD_LOGIC; |
d_strobe : out STD_LOGIC; |
||
d_clk : out STD_LOGIC; |
d_clk : out STD_LOGIC; |
||
− | d_data : inout STD_LOGIC |
+ | d_data : inout STD_LOGIC); |
− | --LED1 : out std_logic |
||
− | ); |
||
end dx_display_xmit; |
end dx_display_xmit; |
||
Line 352: | Line 359: | ||
signal bitsLeftToSend : std_logic_vector(6 downto 0) := (others => '0'); |
signal bitsLeftToSend : std_logic_vector(6 downto 0) := (others => '0'); |
||
signal state : std_logic_vector(3 downto 0) := (others => '0'); |
signal state : std_logic_vector(3 downto 0) := (others => '0'); |
||
− | + | signal divider : integer range 0 to 1023 := 0; |
|
− | signal divider : std_logic_vector(63 downto 0) := (63=>'1', others =>'0'); |
||
signal keydataLocal : std_logic_vector(keydata'range); |
signal keydataLocal : std_logic_vector(keydata'range); |
||
begin |
begin |
||
Line 359: | Line 365: | ||
begin |
begin |
||
if rising_edge(clk) then |
if rising_edge(clk) then |
||
− | + | divider <= divider +1; |
|
− | divider <= divider(0) & divider(divider'left downto 1); |
||
adv <= '0'; |
adv <= '0'; |
||
if reset = '1' then |
if reset = '1' then |
||
thisByte <= (others => '0'); |
thisByte <= (others => '0'); |
||
− | --thisEndCmd <= endCmd; |
||
state <= (others => '0'); |
state <= (others => '0'); |
||
d_strobe <= '1'; |
d_strobe <= '1'; |
||
d_clk <= '1'; |
d_clk <= '1'; |
||
d_data <= '1'; |
d_data <= '1'; |
||
− | + | divider <= 0; |
|
− | + | elsif divider = (clkDivider-1) then |
|
− | + | divider <= 0; |
|
− | -- divider <= 0; |
||
− | elsif divider(0) = '1' then |
||
d_strobe <= '1'; |
d_strobe <= '1'; |
||
d_clk <= '1'; |
d_clk <= '1'; |
||
Line 479: | Line 481: | ||
--11515/9563=1.204120046010666; log(16)/log(10) = 1.2041199826559246 |
--11515/9563=1.204120046010666; log(16)/log(10) = 1.2041199826559246 |
||
− | + | --(11515*i+9563*4-1)/(9563*4)*4 |
|
+ | variable bcd : unsigned(4*((11515*(bin'left+1)+9563*4-1)/(9563*4))-1 downto 0) := (others => '0'); |
||
variable bint : bitarray(bin'range):=bin; |
variable bint : bitarray(bin'range):=bin; |
||
variable i : integer:=0; |
variable i : integer:=0; |
||
Line 495: | Line 498: | ||
return bcd; |
return bcd; |
||
end to_bcd; |
end to_bcd; |
||
− | end package body; |
+ | end package body; |
+ | </nowiki> |
||
=See Also= |
=See Also= |
Latest revision as of 17:17, 20 May 2013
Documents
Hamsterworks code
I'm using the VHDL code from Hamster on my papilio board, and it works. Thanks Hamsterworks!
Looks like the pinning of the DX display cable as described by Hamster has changed (or was wrong). The silkscreen on my (ordered october 2011) DX display looks like this (this is the 'bottom view', the pins of the socket as seen from above are the mirror-image of this):
pin | func | func | pin |
---|---|---|---|
2 | Gnd | Vcc | 1 |
4 | DIO | CLK | 3 |
6 | STB1 | STB0 | 5 |
8 | STB3 | STB2 | 7 |
10 | STB5 | STB4 | 9 |
So it looks like hamster's pinning has DIO/Data and CLK swapped, and the even Strobes were off by 2. Also, it's Strobe0 that controls this board (not Strobe1), the other strobes pass through to the 'out' connector.
I notice that after I power cycle (powered by USB cable) my papilio board (and the TM1638), I have to send the .bit file several times to the board. Strange.
- When setting d_clock to 32MHz/8/2, it always works the first time.
- Setting d_clock to 32MHz/4/2, it will not work at all
I'm using this constraints.ucf file for my papilio board:
# Crystal Clock - use 32MHz onboard oscillator NET "clk" LOC = "P89" | IOSTANDARD = LVCMOS25 | PERIOD = 31.25ns ; NET "d_data" LOC = "P86" | IOSTANDARD=LVCMOS33; NET "d_clk" LOC = "P85" | IOSTANDARD=LVCMOS33; NET "d_strobe" LOC = "P84" | IOSTANDARD=LVCMOS33;
But other than that, Hamsters code works.
Commands
bits | Description |
---|---|
010000000 | setup TM1638 to write data to display register, auto increment |
010000010 | setup TM 1638 to read data from key scans, auto increment |
010000100 | setup TM 1638 to write data to display register, single address |
010000010 | setup TM 1638 to read data from key scans, single address |
1100aaaa dddddddd | At address aaaa write/read dddddddd - multiple bytes of data can be transferred |
1000abbb | Display control - a = active, bbb = brightness |
After sending 46 the responce will be 4 bytes, key one is in bit zero (LSB) of the first byte, key two is in bit one of the second byte, etc. key 5 is in bit 4 of the first byte, key 6 in bit 4 of the second byte, etc.
VHDL code for numeric data display
The code below can read the TM1638 key status, and show hex and decimal numbers on the display.
File design_top.vhdl
--------------------------------------------------------------------------------- -- Original by: Engineer: Mike Field <hamster@snap.net.nz> -- Modifications by: Joost Witteveen -- -- ---------------------------------------------------------------------------------- library IEEE; use IEEE.STD_LOGIC_1164.ALL; use IEEE.NUMERIC_STD.ALL; library work; use work.types.all; entity design_top is Port ( clk : in STD_LOGIC; d_clk : out STD_LOGIC; d_strobe : out STD_LOGIC; d_data : inout STD_LOGIC); end design_top; architecture Behavioral of design_top is COMPONENT dx_display Generic(clkDivider: integer); PORT( clk : IN std_logic; d_strobe : OUT std_logic; d_clk : OUT std_logic; d_data : inOUT std_logic; digits : in bytearray(0 to 7); leds : in bytearray(0 to 7); keybyte : out std_logic_vector(7 downto 0) ); END COMPONENT; COMPONENT display7seg PORT (digits : out bytearray; data : in integer ); end COMPONENT; signal Count : integer range 0 to 34*1000*1000 :=1000*1000-1; signal digits: bytearray(0 to 7) := (others => x"00"); signal leds: bytearray(0 to 7) := (others => x"00"); signal data: integer range -2000000000 to 2000000000 :=0;--20000/3; signal decdata: integer range -2000000000 to 2000000000 :=0;--20000/3; signal tmp: std_logic_vector(31 downto 0); signal keybyte: std_logic_vector(7 downto 0); signal key_int:integer range 0 to 255; begin Inst_dx_display: dx_display Generic Map(clkDivider => 16) PORT MAP( clk => clk, d_strobe => d_strobe, d_clk => d_clk, d_data => d_data, digits => digits, leds => leds, keybyte => keybyte ); Inst_display7seg:display7seg PORT MAP( digits => digits(0 to 1), data => key_int); Inst_display7segDec:display7seg PORT MAP( digits => digits(2 to 7), data => decdata); reset_proc: process(clk) begin if rising_edge(clk) then if Count > 0 then Count <=Count-1; else Count<=200*1000*1; data<=data+1; --for i in 0 to 3 loop -- tmp(i*8 + 7 downto i*8) <= keydata(i); --end loop; --decdata<=decdata+1; --tmp1<=std_logic_vector(to_unsigned(data,8)); --tmp(31 downto 24) <= keydata(0); --tmp(23 downto 16) <= keydata(1); --tmp(15 downto 8) <= keydata(2); --tmp(7 downto 0) <= keydata(3); --tmp(23 downto 0)<=std_logic_vector(to_unsigned(data+1,24)); --tmp(7 downto 0) <= keybyte; --tmp(15 downto 8) <= keybyte; --tmp(23 downto 16) <= keybyte; --tmp(31 downto 24) <= keybyte; --data<=to_integer(unsigned(tmp)); decdata<=to_integer(to_bcd(bitarray(std_logic_vector(to_unsigned(data,20))))); key_int <= to_integer((unsigned(keybyte))); for i in 0 to 7 loop leds(i)(0)<=keybyte(i); leds(i)(1)<='0'; end loop; end if; end if; end process; end Behavioral;
File dx_display.vhdl
---------------------------------------------------------------------------------- -- Original by: Engineer: Mike Field <hamster@snap.net.nz> -- Modifications by: Joost Witteveen -- -- Description: Driver for the DealExteme display board, TM1638 -- 8 x 7 segs -- 8 x bi-colour LED -- 8 x buttons ---------------------------------------------------------------------------------- library IEEE; use IEEE.STD_LOGIC_1164.ALL; use IEEE.NUMERIC_STD.ALL; library work; use work.types.all; entity dx_display is Generic(clkDivider: integer); PORT( clk : IN std_logic; d_strobe: OUT std_logic; d_clk : OUT std_logic; d_data : inOUT std_logic; digits : in bytearray(0 to 7); leds : in bytearray(0 to 7); keybyte : out std_logic_vector(7 downto 0) ); end dx_display; architecture Behavioral of dx_display is signal counter : integer range 0 to 31 :=0;--std_logic_vector(5 downto 0) := (others => '0'); signal counterPreClk:std_logic:='0'; signal counterClk: std_logic:='0'; signal nextcounter : integer range 0 to 31; --unsigned(counter'range); signal byte : std_logic_vector(7 downto 0); signal endCmd : std_logic; signal newData : std_logic; signal send : std_logic; signal adv : std_logic; signal reset : std_logic := '1'; signal resetCount : integer range 0 to 32*1000*1000 :=1*100-1; signal keydataone : std_logic_vector(7 downto 0); constant headersize: integer := 8; COMPONENT dx_display_xmit Generic(clkDivider: integer); Port ( clk : in STD_LOGIC; reset : in STD_LOGIC; byte : in STD_LOGIC_VECTOR (7 downto 0); keydata : inout STD_LOGIC_VECTOR (7 downto 0); endCmd : in STD_LOGIC; newData : in STD_LOGIC; send : in STD_LOGIC; adv : out STD_LOGIC; d_strobe : out STD_LOGIC; d_clk : out STD_LOGIC; d_data : inout STD_LOGIC); end component; begin --nextcounter <= unsigned(counter) + 1; nextcounter <= counter +1; Inst_dx_display_xmit: dx_display_xmit Generic Map(clkDivider => clkDivider) PORT MAP( clk => clk, reset => reset, byte => byte, keydata => keydataone, endCmd => endCmd, newData => newData, send => send, adv => adv, d_strobe => d_strobe, d_clk => d_clk, d_data => d_data); data_proc: process(counterClk) begin if counterClk'event and counterClk='1' then send<= '1'; newData<='1'; case counter is --when "000000" => byte <= x"00"; endCmd <= '1'; when 0 => byte <= x"46"; endCmd <= '0'; when 1 => byte <= x"00"; endCmd <= '0'; send<='0'; when 2 => byte <= x"00"; endCmd <= '0'; send<='0'; keybyte(0)<=keydataone(0); keybyte(4)<=keydataone(4); when 3 => byte <= x"00"; endCmd <= '0'; send<='0'; keybyte(1)<=keydataone(0); keybyte(5)<=keydataone(4); when 4 => byte <= x"00"; endCmd <= '1'; send<='0'; keybyte(2)<=keydataone(0); keybyte(6)<=keydataone(4); when 5 => byte <= x"40"; endCmd <= '1'; -- Set address mode - auto inc keybyte(3)<=keydataone(0); keybyte(7)<=keydataone(4); when 6 => byte <= x"88"; endCmd <= '1'; -- Turn display on, lowest brightness (0) when 7 => byte <= x"C0"; endCmd <= '0';-- Write at the left display when others => if counter <= 15+headersize then if to_unsigned(counter,1)(0)='0' then byte<=digits((counter-headersize)/2); else byte<=leds((counter-headersize)/2); end if; if counter < 15+headersize then endCmd<='0'; else endCmd<='1'; end if; else byte <= x"FF"; endCmd <= '1'; newData <= '0'; -- End of data / idle end if; end case; end if; end process; clk_proc: process(clk) begin if rising_edge(clk) then counterPreClk<='0'; if reset = '1' then counter <= 31; elsif counter =31 then counterPreClk<='1'; counter <= 0; elsif adv = '1' and counter < 31 then counterPreClk<='1'; counter <= nextcounter; end if; end if; end process; counterClk_proc:process(clk) begin if rising_edge(clk) then counterClk<=counterPreClk; end if; end process; reset_proc: process(clk) begin if rising_edge(clk) then if resetCount > 0 then resetCount <=resetCount-1; else resetCount<=1*100*1000; reset<= not reset; end if; end if; end process; end Behavioral;
File dx_display_xmit.vhdl
---------------------------------------------------------------------------------- -- Engineer: Mike Field <hamster@snap.net.nz> -- Modified by: Joost Witteveen -- ---------------------------------------------------------------------------------- library IEEE; use IEEE.STD_LOGIC_1164.ALL; use IEEE.NUMERIC_STD.ALL; entity dx_display_xmit is Generic (clkDivider: integer); Port ( clk : in STD_LOGIC; reset : in STD_LOGIC; byte : in STD_LOGIC_VECTOR (7 downto 0); keydata : out STD_LOGIC_VECTOR (7 downto 0); endCmd : in STD_LOGIC; newData : in STD_LOGIC; send : in STD_LOGIC; adv : out STD_LOGIC; d_strobe : out STD_LOGIC; d_clk : out STD_LOGIC; d_data : inout STD_LOGIC); end dx_display_xmit; architecture Behavioral of dx_display_xmit is signal thisByte : std_logic_vector(7 downto 0) := (others => '0'); signal bitsLeftToSend : std_logic_vector(6 downto 0) := (others => '0'); signal state : std_logic_vector(3 downto 0) := (others => '0'); signal divider : integer range 0 to 1023 := 0; signal keydataLocal : std_logic_vector(keydata'range); begin clk_proc: process(clk) begin if rising_edge(clk) then divider <= divider +1; adv <= '0'; if reset = '1' then thisByte <= (others => '0'); state <= (others => '0'); d_strobe <= '1'; d_clk <= '1'; d_data <= '1'; divider <= 0; elsif divider = (clkDivider-1) then divider <= 0; d_strobe <= '1'; d_clk <= '1'; if send = '1' then d_data <= '1'; else d_data <='Z'; end if; case state is when "0000" => -- Idle, without an open command if newData = '1' then state <= std_logic_vector(unsigned(state)+1); thisByte <= byte; d_strobe <= '0'; d_clk <= '1'; else d_strobe <= '1'; d_clk <= '1'; end if; bitsLeftToSend <= (others => '1'); keydatalocal<=x"55"; when "0001" => -- transfer a bit state <= std_logic_vector(unsigned(state)+1); d_strobe <= '0'; d_clk <= '0'; if send = '1' then d_data <= thisByte(0); end if; when "0010" => if bitsLeftToSend(0) = '1' then -- Still got a bit to send? state <= std_logic_vector(unsigned(state)-1); else if send = '0' then keydata <= d_data & keydatalocal(7 downto 1); end if; adv <= '1'; if EndCmd = '1' then state <= "0011"; -- close off command else state <= "0100"; -- keep command open end if; end if; d_strobe <= '0'; d_clk <= '1'; if send = '1' then d_data <= thisByte(0); thisByte <= '1' & thisByte(7 downto 1); else keydatalocal <= d_data & keydatalocal(7 downto 1); end if; bitsLeftToSend <= '0' & bitsLeftToSend(6 downto 1); when "0011" => --- ending the command by rasing d_strobe, then going back to idle state state <= "0000"; d_strobe <= '1'; d_clk <= '1'; if send = '1' then d_data <= thisByte(0); else keydata <= keydatalocal; end if; when "0100" => -- Waiting for data, with an open command d_strobe <= '0'; d_clk <= '1'; if newData = '1' then state <= "0001"; -- start transfering bits thisByte <= byte; bitsLeftToSend <= (others => '1'); end if; when others => -- performa a reset thisByte <= (others => '0'); state <= (others => '0'); d_strobe <= '1'; d_clk <= '1'; end case; end if; end if; end process; end Behavioral;
And finally, the file types.vhdl, with the to_bdc function and the type declarations:
library IEEE; use IEEE.STD_LOGIC_1164.ALL; use IEEE.NUMERIC_STD.ALL; package types is type digitdata is array (0 to 15) of STD_LOGIC_VECTOR(7 downto 0); type bytearray is array (integer range <>) of STD_LOGIC_VECTOR(7 downto 0); type bitarray is array (integer range <>) of STD_LOGIC; function to_bcd ( bin : bitarray ) return unsigned; end package; package body types is function to_bcd ( bin : bitarray ) return unsigned is --http://stackoverflow.com/questions/12951759/how-to-decode-an-unsigned-integer-into-bcd-use-vhdl --(c)2012 Enthusiasticgeek for Stack Overflow. --Use at your own risk (includes commercial usage). --These functions are released in the public domain and --free to use as long as this copyright notice is retained. --adapted for variable-length inputs by joost witteveen. --11515/9563=1.204120046010666; log(16)/log(10) = 1.2041199826559246 --(11515*i+9563*4-1)/(9563*4)*4 variable bcd : unsigned(4*((11515*(bin'left+1)+9563*4-1)/(9563*4))-1 downto 0) := (others => '0'); variable bint : bitarray(bin'range):=bin; variable i : integer:=0; begin for i in bint'REVERSE_RANGE loop bcd := bcd(bcd'left-1 downto 0) & bint(bint'left); --shifting the bits. bint := bint((bint'left-1) downto 0)& '0'; for ibcd in 0 to (bcd'left+1)/4-1 loop if(i < bin'left and bcd(ibcd*4+3 downto ibcd*4) > "0100") then --add 3 if BCD digit is greater than 4. bcd(ibcd*4+3 downto ibcd*4) := bcd(ibcd*4+3 downto ibcd*4) + "0011"; end if; end loop; end loop; return bcd; end to_bcd; end package body;