Numpy surprises
From Tech
Jump to navigationJump to searchNew in numpy version 2: numpy int types aren't promoted to bigger types.
>>> np.__version__
'2.2.4'
#
np.uint8(1) + 255
<python-input-21>:1: RuntimeWarning: overflow encountered in scalar add
np.uint8(0)
#
# When the value of the int is bigger than would fit in the numpy type, an error is thrown:
np.uint8(0)+256
Traceback (most recent call last):
File "<python-input-29>", line 1, in <module>
np.uint8(0)+256
17:13, 11 December 2025 (CET)17:13, 11 December 2025 (CET)~^Joosteto (talk)
OverflowError: Python integer 256 out of bounds for uint8
The old numpy 1.24 used to promote numpy int types to 64-bit:
>>> np.__version__ '1.24.2' # >>> type(np.uint8(1) + 1) <class 'numpy.int64'> #or to bigger types, if needed type(np.uint8(1)+2**63) <class 'numpy.ulonglong'>
Also funny: the old 1.24 numpy 'promoted' the uint64 type to float when confronted with python int:
np.uint64(1)+1 2.0 type(np.uint64(1)+1) <class 'numpy.float64'> # #But... uin32 isn't promoted to float, but to... int64(!) type(np.uint32(1)+1) <class 'numpy.int64'> # # Same as uint8: type(np.uint8(1)+1) <class 'numpy.int64'> # # However, the signed versions, numpy.int64, numpy.int32 are just always converted to numpy.int64: type(np.int32(1)+1) <class 'numpy.int64'> # np.__version__ '1.24.2'
This is all improved a lot in numpy 2:
type(np.uint64(1)+1) <class 'numpy.uint64'> # type(np.uint32(1)+1) <class 'numpy.uint32'> # type(np.int32(1)+1) <class 'numpy.int32'> # np.__version__ '2.2.4'